3个回答
展开全部
用倒代换 , 令 x = 1/t, 则 dx = -dt/t^2, 得
I = ∫dx/[x√(1+x^4) = ∫-tdt/√(1+t^4) = -(1/2)∫d(t^2)/√(1+t^4)
令 t^2 = tanu, 则 dt^2 = (secu)^2du, 得
I = -(1/2)∫secudu = -(1/2)ln|secu+tanu| + C
= -(1/2)ln|√(1+t^4)+t^2| + C= -(1/2)ln|√(1+1/x^4)+1/x^2| + C
= -(1/2)ln[√(1+x^4)+1] + ln|x| + C
也可不用倒代换
I = ∫dx/[x√(1+x^4)] = ∫xdx/[x^2√(1+x^4)] = (1/2)∫d(x^2)/[x^2√(1+x^4)]
令 x^2 = tanu, 则 dx^2 = (secu)^2du, 得
I = (1/2)∫(secu)^2du/(tanusecu) = (1/2)∫du/sinu
= (1/2)ln|cscu-cotu| + C = (1/2)ln|[√(1+x^4)-1]/x^2| + C
= (1/2)ln[√(1+x^4)-1] - ln|x| + C
I = ∫dx/[x√(1+x^4) = ∫-tdt/√(1+t^4) = -(1/2)∫d(t^2)/√(1+t^4)
令 t^2 = tanu, 则 dt^2 = (secu)^2du, 得
I = -(1/2)∫secudu = -(1/2)ln|secu+tanu| + C
= -(1/2)ln|√(1+t^4)+t^2| + C= -(1/2)ln|√(1+1/x^4)+1/x^2| + C
= -(1/2)ln[√(1+x^4)+1] + ln|x| + C
也可不用倒代换
I = ∫dx/[x√(1+x^4)] = ∫xdx/[x^2√(1+x^4)] = (1/2)∫d(x^2)/[x^2√(1+x^4)]
令 x^2 = tanu, 则 dx^2 = (secu)^2du, 得
I = (1/2)∫(secu)^2du/(tanusecu) = (1/2)∫du/sinu
= (1/2)ln|cscu-cotu| + C = (1/2)ln|[√(1+x^4)-1]/x^2| + C
= (1/2)ln[√(1+x^4)-1] - ln|x| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
let
x^2=tanu
2x dx = (secu)^2 du
∫ dx/[x.√(x^4+1)]
=∫ 2xdx/[2x^2.√(x^4+1)]
=∫ (secu)^2 du/[2tanu.secu]
=(1/2) ∫ (secu/tanu) du
=(1/2) ∫ du/sinu
=(1/2) ∫ cscu du
=(1/2)ln|cscu -cotu| +C
=(1/2)ln| √(x^4+1)/x^2 -1/x^2| +C
=(1/2)ln| √(x^4+1)-1| - ln|x| +C
x^2=tanu
2x dx = (secu)^2 du
∫ dx/[x.√(x^4+1)]
=∫ 2xdx/[2x^2.√(x^4+1)]
=∫ (secu)^2 du/[2tanu.secu]
=(1/2) ∫ (secu/tanu) du
=(1/2) ∫ du/sinu
=(1/2) ∫ cscu du
=(1/2)ln|cscu -cotu| +C
=(1/2)ln| √(x^4+1)/x^2 -1/x^2| +C
=(1/2)ln| √(x^4+1)-1| - ln|x| +C
更多追问追答
追问
这是倒代换方法吗
追答
三角代换方法
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询