xarcsinxdx的不定积分
2个回答
展开全部
单独求∫√(1-x²)dx
令x=sina
√(1-x²)=cosa
sin2a=2sinacosa=2x√(1-x²)
dx=cosada
∫√(1-x²)dx
=∫cosa*cosada
=∫(1+cos2a)/2 da
=1/2∫da+1/4∫cos2ad2a
=a/2+sin2a/4
=arcsinx/2+2x√(1-x²)/4
=arcsinx/2+x√(1-x²)/2
所以原式=1/2x²*arcsinx+(arcsinx)/4+x√(1-x²)/4-arcsinx+C
由定义可知:
求函数f(x)的不定积分,就是要求出f(x)的所有的原函数,由原函数的性质可知,只要求出函数f(x)的一个原函数,再加上任意的常数C就得到函数f(x)的不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |