不用洛必达法则,a的x次方剪减1再除以x的极限该如何求?
4个回答
展开全部
利用等价无穷小e^x-1~x来计算,a^x=e^ln(a^x)=e^(xlna),所以分子可以等价替换成xlna,除以x之后就剩下lna。
即:(a^x-1)/x=xlna/x=lna。
等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
7、利用两个重要极限公式求极限。
2018-04-06
展开全部
利用等价无穷小代替,可求出。当x趋于0时,a^x-1~xlna
当x趋于0时,
lim(a^x-1)/x
=lim(xlna)/x
=lna
当x趋于0时,
lim(a^x-1)/x
=lim(xlna)/x
=lna
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询