x=π/3为函数f(x)=msin2x-cos2x图一条对称轴,求单增区间,设三角形ABC边a,b
x=π/3为函数f(x)=msin2x-cos2x图一条对称轴,求单增区间,设三角形ABC边a,bc,f(B)=2,b=√3,a-c/2取值范围...
x=π/3为函数f(x)=msin2x-cos2x图一条对称轴,求单增区间,设三角形ABC边a,bc,f(B)=2,b=√3,a-c/2取值范围
展开
1个回答
展开全部
解:f(x)=msin2x-cos2x=√(m²+1)(msin2x/√(m²+1)-cos2x/√(m²+1))=√(m²+1)(sin(2x-arcsin(1/√(m²+1))),
∵x=π/3为函数f(x)=msin2x-cos2x图象的一条对称轴,
∴f(π/3)=m√3/2+1/2=±√(m²+1),解得m=√3,
∴f(x)=2sin(2x-π/6),x∈(kπ-π/6,kπ+π/3),k∈Z,为单调递增区间,
∵f(B)=2=2sin(2B-π/6),-π/6<2B-π/6<11π/6,∴2B-π/6=π/2,B=π/3,
2R=b/sinB,∴R=1,
(a-c)/2=(2RsinA-2RsinC)/2=sinA-sinC=2cos((A+C)/2)sin((A-C)/2)=2cos((π-π/3)/2)sin((A-C)/2)=sin((A-C)/2)
∵-π/3<(A-C)/2<π/3,∴-√3/2<(a-c)/2<√3/2。
∵x=π/3为函数f(x)=msin2x-cos2x图象的一条对称轴,
∴f(π/3)=m√3/2+1/2=±√(m²+1),解得m=√3,
∴f(x)=2sin(2x-π/6),x∈(kπ-π/6,kπ+π/3),k∈Z,为单调递增区间,
∵f(B)=2=2sin(2B-π/6),-π/6<2B-π/6<11π/6,∴2B-π/6=π/2,B=π/3,
2R=b/sinB,∴R=1,
(a-c)/2=(2RsinA-2RsinC)/2=sinA-sinC=2cos((A+C)/2)sin((A-C)/2)=2cos((π-π/3)/2)sin((A-C)/2)=sin((A-C)/2)
∵-π/3<(A-C)/2<π/3,∴-√3/2<(a-c)/2<√3/2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询