对数函数中底数的幂提:可以根据指对函数的单调性和找中间量两种方法。
先说单调性方法,如果是底数一样可以用此方法,底数大于一,函数单增,指数越大,值越大,底数大于零小于一,函数单减,指数越小,值越大。对于对数函数,对于指数函数,如果指数相同,底数不同,实质上应用的是幂函数的单调性,对于对数函数,如果真数相同,底数不同。
一般地
函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。