2. 设X和Y是两个相互独立的随机变量,其概率密度分别为,求随机变量Z=X Y的概率密度函数

 我来答
帐号已注销
2020-05-30 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

z=2X+Y

Y=-2X+z,X=0,Y=z;Y=0,X=z/2;

(1)X=z/2≤1,z≤2;

P(Z≤z)=∫(0,z/2)fx(x)dx∫(0,-2x+z)fy(y)dy

=∫(0,z/2)1dx∫(0,-2x+z)e^(-y)dy

=-∫(0,z/2)[e^(-y)](0,-2x+z)dx

=-∫(0,z/2)[e^(2x-z)-1]dx

=-[0.5e^(2x-z)-x](0,z/2)

=-[0.5-z/2-0.5e^(-z)]

fz(z)=-[-1/2+0.5e^(-z)]=1/2-0.5/e^z=0.5(1-1/e^z)

z>2

P(Z≤z)=∫(0,1)fx(x)dx∫(0,-2x+z)fy(y)dy

=∫(0,1)dx∫(0,-2x+z)e^(-y)dy

=-∫(0,1)[e^(-y)](0,-2x+z)dx

=-∫(0,1)[e^(2x-z)-1]dx

=-[0.5e^(2x-z)-x](0,1)

=-[0.5e^(2-z)-1-0.5e^(-z)]

=1+0.5e^(-z)-0.5e^(2-z)

求导

fz(z)=-0.5e^(-z)+0.5e^(2-z)

=0.5e^(-z)[e²-1]

连续型随机制变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。

而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。bai当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。

扩展资料:

在研究随机变量的性质时,确定和计算它取某个数值或落入某个数值区间内的概率是特别重要的。因此,随机变量取某个数值或落入某个数值区间这样的基本事件的集合,应当属于所考虑的事件域。

根据这样的直观想法,利用概率论公理化的语言,取实数值的随机变量的数学定义可确切地表述如下:概率空间(Ω,F,p)上的随机变量x是定义于Ω上的实值可测函数,即对任意ω∈Ω,X(ω)为实数,且对任意实数x,使X(ω)≤x的一切ω组成的Ω的子集{ω:X(ω)≤x}是事件,也即是F中的元素。事件{ω:X(ω)≤x}常简记作{x≤x},并称函数F(x)=p(x≤x),-∞<x<∞ ,为x的分布函数。

参考资料来源:百度百科-随机变量

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式