柯西中值定理的证明

柯西中值定理的证明求拍照,我没书... 柯西中值定理的证明求拍照,我没书 展开
 我来答
阿鑫聊生活
高粉答主

2019-12-24 · 生活知识分享小达人,专注于讲解生活知识。
阿鑫聊生活
采纳数:1217 获赞数:235089

向TA提问 私信TA
展开全部

柯西中值定理的证明:

因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。

另证:若 M>m ,不妨设f(ξ)=M,ξ∈(a,b),由可导条件知,f'(ξ+)<=0,f'(ξ-)>=0,又由极限存在定理知左右极限均为 0,得证。

扩展资料:

范例解析

用罗尔中值定理证明:方程

3

在 (0,1) 内有实根。

证明: 设

则 F(x) 在 [0,1] 上连续,在 (0,1) 内可导,

,所以由罗尔中值定理,至少存在一点

,使得

,所以

,所以ξ是方程

在 (0,1) 内的一个实根。

结论得证。

bill8341
高粉答主

2017-12-09 · 关注我不会让你失望
知道大有可为答主
回答量:1.8万
采纳率:95%
帮助的人:3706万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式