如何在小学数学教学中培养化归的思想方法
1个回答
2017-12-15 · 知道合伙人教育行家
关注
展开全部
小学数学知识分为显性知识和隐性知识两个方面。小学数学教材是数学教学的显性知识系统,而数学思想方法是数学教学的隐性知识系统。
在小学阶段数学学科最重要的知识莫过于数学思想方法的知识,它是学生未来能够适应社会和继续学习的一种能力。笛卡尔说过:“数学是使人变聪明的一门学科”。数学思想方法是数学的精髓,是数学精神和科学世界观的重要组成部分,需要长期培养,经常应用,潜移默化。
小学数学常用的数学思想方法有:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思想方法、变中抓不变的思想方法等等。
本文就自己在教学中的实践谈谈如何培养化归的思想方法。
所谓“化归”,就是转化和归结。在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过对问题乙的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。
化归思想的实质,是将新问题转化为已掌握的旧知识,然后进一步理解并解决新问题。它的基本形式有:化未知为已知,化新为旧,化难为易,化繁为简,化曲为直。
一些学生平时学习很认真,可遇到新问题却无从下手,不知道从何开始解决问题,出现这种情况的根本原因就是不会灵活应用已学的数学思想方法去思考问题,实现问题的转化。
那么如何在小学数学教学过程中培养学生掌握化归的数学思想方法呢?
一、搭建新问题向已学知识化归的桥梁
例1.计算 + ==?
学生刚开始学习异分母分数加法,怎样求出它们的和?是一个所要解决的未知问题,为了解决这个问题。
教师搭桥:我们没学过这样的分数加法,但我们已学过 + = 的加法。问:算式的含义是什么?你们能用平面图表示出算式的意义吗?能不能想办法把现在的新问题转化为已学过的问题,从而找出解决问题的途径呢?
教师引导学生必须把 + =?化归为学生能解决的同分母分数相加的问题上来。即通过通分,把异分母分数加法化为同分母分数加法,使之达到原问题的解决。即:
+ (新问题)=(转化为) + (旧问题)== (结论)
当得出结论后,教师一定要追问:你们是怎么想的?是运用什么数学思想方法解决问题的?
看似这平常的、简单的一问,其实化归的数学思想方法在这一问中,得到了升华、得到了加强、得到了巩固。
二、归纳概括出化归思想方法在知识构建中的作用
学完一种知识,比如小数加减法;或学完一类知识,比如,平面图形面积的计算;或学完阶段知识,比如,小学阶段的数学学习结束时,教师就要引导学生归纳概括出我们学习这些知识时,运用了哪些数学思想方法去解决的?从而进一步明确这些个数学思想方法在知识建构中的重要作用。
比如:当学完平面图形时,教师可以引导学生归纳概括出小学阶段我们学过的平面图形的面积的计算公式都是如何推导出来的?即总结概括在同类知识结构中,化归思想方法在知识建构中的运用。
设问:我们都学习过哪些平面图形的面积公式?
总结:长方形、正方形、三角形、梯形、圆形。
启思:同学们想想,这些平面图形的面积都是怎么推导出来的?运用的是什么方法?
在给出充分的时间让学生独立思考、合作探究后,总结概括:
正方形用数格子的方式,得出正方形的面积=边长×边长;
长方形的面积,是用正方形和数格子的方法得出长方形的面积=长×宽;
平行四边形的面积,是把平行四边形转化为长方形的图形,长方形的长就是平行四边形的长,长方形的宽就是平行四边形的高,长方形的面积=长×宽,那么,平行四边形的面积就等于长乘以高。从而推导出平行四边形的面积=底×高;
三角形的面积,是把三角形转化为长方形或平行四边形(或正方形),从而推导出三角形的面积=底×高÷2;
梯形(转化为)长方形(或正方形),从而推导出梯形的面积=(上底+下底)×高÷2
圆的面积:我们用剪一剪、拼一拼、旋转、平移的方法,把圆形化归为一个近似于长方形的图形。发现:圆周长的一半相当于长方形的长,宽相当于圆的半径,平行四边形的面积等于长乘以宽,圆的面积就等于圆周长的一半乘以半径,那么,圆的面积=圆周长的一半×半径= ×r=π× r2 。所以得出圆的面积等于π× r2
我们推导出的平面图形的面积计算公式,都是把一种新图形化归为已学过的图形,从而用已学过的面积公式推导出新图形的面积公式,把没有学过的知识转化为我们已经学过的知识来解决新问题,这种解决数学问题的方法就是——化归的数学思想方法。
化归的数学思想方法,不仅仅在小学阶段学习占有重要的地位,同时,它也是中学、高中学习的一种重要的思想方法,更是我们终身学习的一种思想方法。
当小学阶段学习结束时,教师还要引导学生归纳概括出:化归的数学思想方法在计算中的应用、在几何图形中的应用、在应用题中的应用,从而告诉学生学习数学知识最重要的是思想方法的学习,它是进一步学习知识的最重要的武器。
在小学阶段数学学科最重要的知识莫过于数学思想方法的知识,它是学生未来能够适应社会和继续学习的一种能力。笛卡尔说过:“数学是使人变聪明的一门学科”。数学思想方法是数学的精髓,是数学精神和科学世界观的重要组成部分,需要长期培养,经常应用,潜移默化。
小学数学常用的数学思想方法有:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思想方法、变中抓不变的思想方法等等。
本文就自己在教学中的实践谈谈如何培养化归的思想方法。
所谓“化归”,就是转化和归结。在解决数学问题时,人们常常将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过对问题乙的解答返回去求得原问题甲的解答,这就是化归方法的基本思想。
化归思想的实质,是将新问题转化为已掌握的旧知识,然后进一步理解并解决新问题。它的基本形式有:化未知为已知,化新为旧,化难为易,化繁为简,化曲为直。
一些学生平时学习很认真,可遇到新问题却无从下手,不知道从何开始解决问题,出现这种情况的根本原因就是不会灵活应用已学的数学思想方法去思考问题,实现问题的转化。
那么如何在小学数学教学过程中培养学生掌握化归的数学思想方法呢?
一、搭建新问题向已学知识化归的桥梁
例1.计算 + ==?
学生刚开始学习异分母分数加法,怎样求出它们的和?是一个所要解决的未知问题,为了解决这个问题。
教师搭桥:我们没学过这样的分数加法,但我们已学过 + = 的加法。问:算式的含义是什么?你们能用平面图表示出算式的意义吗?能不能想办法把现在的新问题转化为已学过的问题,从而找出解决问题的途径呢?
教师引导学生必须把 + =?化归为学生能解决的同分母分数相加的问题上来。即通过通分,把异分母分数加法化为同分母分数加法,使之达到原问题的解决。即:
+ (新问题)=(转化为) + (旧问题)== (结论)
当得出结论后,教师一定要追问:你们是怎么想的?是运用什么数学思想方法解决问题的?
看似这平常的、简单的一问,其实化归的数学思想方法在这一问中,得到了升华、得到了加强、得到了巩固。
二、归纳概括出化归思想方法在知识构建中的作用
学完一种知识,比如小数加减法;或学完一类知识,比如,平面图形面积的计算;或学完阶段知识,比如,小学阶段的数学学习结束时,教师就要引导学生归纳概括出我们学习这些知识时,运用了哪些数学思想方法去解决的?从而进一步明确这些个数学思想方法在知识建构中的重要作用。
比如:当学完平面图形时,教师可以引导学生归纳概括出小学阶段我们学过的平面图形的面积的计算公式都是如何推导出来的?即总结概括在同类知识结构中,化归思想方法在知识建构中的运用。
设问:我们都学习过哪些平面图形的面积公式?
总结:长方形、正方形、三角形、梯形、圆形。
启思:同学们想想,这些平面图形的面积都是怎么推导出来的?运用的是什么方法?
在给出充分的时间让学生独立思考、合作探究后,总结概括:
正方形用数格子的方式,得出正方形的面积=边长×边长;
长方形的面积,是用正方形和数格子的方法得出长方形的面积=长×宽;
平行四边形的面积,是把平行四边形转化为长方形的图形,长方形的长就是平行四边形的长,长方形的宽就是平行四边形的高,长方形的面积=长×宽,那么,平行四边形的面积就等于长乘以高。从而推导出平行四边形的面积=底×高;
三角形的面积,是把三角形转化为长方形或平行四边形(或正方形),从而推导出三角形的面积=底×高÷2;
梯形(转化为)长方形(或正方形),从而推导出梯形的面积=(上底+下底)×高÷2
圆的面积:我们用剪一剪、拼一拼、旋转、平移的方法,把圆形化归为一个近似于长方形的图形。发现:圆周长的一半相当于长方形的长,宽相当于圆的半径,平行四边形的面积等于长乘以宽,圆的面积就等于圆周长的一半乘以半径,那么,圆的面积=圆周长的一半×半径= ×r=π× r2 。所以得出圆的面积等于π× r2
我们推导出的平面图形的面积计算公式,都是把一种新图形化归为已学过的图形,从而用已学过的面积公式推导出新图形的面积公式,把没有学过的知识转化为我们已经学过的知识来解决新问题,这种解决数学问题的方法就是——化归的数学思想方法。
化归的数学思想方法,不仅仅在小学阶段学习占有重要的地位,同时,它也是中学、高中学习的一种重要的思想方法,更是我们终身学习的一种思想方法。
当小学阶段学习结束时,教师还要引导学生归纳概括出:化归的数学思想方法在计算中的应用、在几何图形中的应用、在应用题中的应用,从而告诉学生学习数学知识最重要的是思想方法的学习,它是进一步学习知识的最重要的武器。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询