
现在还有人吗?请帮忙看一下这道题的第二小题,要过程,谢谢了(^~^)
展开全部
(-∞,2+2√2]
解析:
(1) a≤0时,显然f(x)≥g(x)(x>1)成立
(2) a>0时,
欲使x²+1≥a|x-1|(x>1),
必须有a≤(x²+1)/(x-1)(x>1)
a≤(x²+1)/(x-1)(x>1)
a≤(x²-1+2)/(x-1)
a≤x+1+2/(x-1)
a≤(x-1)+2/(x-1)+2
右边>2+2√2
故,a≤2+2√2
综上,a≤2+2√2
解析:
(1) a≤0时,显然f(x)≥g(x)(x>1)成立
(2) a>0时,
欲使x²+1≥a|x-1|(x>1),
必须有a≤(x²+1)/(x-1)(x>1)
a≤(x²+1)/(x-1)(x>1)
a≤(x²-1+2)/(x-1)
a≤x+1+2/(x-1)
a≤(x-1)+2/(x-1)+2
右边>2+2√2
故,a≤2+2√2
综上,a≤2+2√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询