高数类试题,求解析
1个回答
展开全部
适用极坐标,
令x=rcosθ,y=rsinθ,
因积分区域为x^2+y^2=2的右半区域
则积分限位 r=[0, 2] , θ=[π/2, 3π/2]
带入x,y
∫∫xy^2dδ=∫(π/2, 3π/2)dθ∫(0, 2)rcosθ(rsinθ)^2*rdr
=∫(π/2, 3π/2)cosθ(sinθ)^2dθ∫(0, 2)r^4dr
=∫(π/2, 3π/2)1/3d(sinθ)^3∫(0, 2)1/5dr^5
=1/3(sinθ)^3|(π/2, 3π/2)*1/5r^5|(0, 2)
=(-1/3-1/3)*1/5*2^5
=-64/15
令x=rcosθ,y=rsinθ,
因积分区域为x^2+y^2=2的右半区域
则积分限位 r=[0, 2] , θ=[π/2, 3π/2]
带入x,y
∫∫xy^2dδ=∫(π/2, 3π/2)dθ∫(0, 2)rcosθ(rsinθ)^2*rdr
=∫(π/2, 3π/2)cosθ(sinθ)^2dθ∫(0, 2)r^4dr
=∫(π/2, 3π/2)1/3d(sinθ)^3∫(0, 2)1/5dr^5
=1/3(sinθ)^3|(π/2, 3π/2)*1/5r^5|(0, 2)
=(-1/3-1/3)*1/5*2^5
=-64/15
追问
非常感谢*^_^*
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询