求不定积分ln(1+根号下((1+x)/x))dx

换元之后做到(1/u²-1)*(1/1+u)就做不下去了,求解答... 换元之后做到(1/u²-1)*(1/1+u)就做不下去了,求解答 展开
 我来答
生活达人在此
2021-07-30 · TA获得超过7917个赞
知道小有建树答主
回答量:1975
采纳率:97%
帮助的人:31.9万
展开全部

具体回答如下:

设 (x+1)/x=u²,则 x=1/(u²-1)

∫ln{1+√[(x+1)/x]} dx

=∫ln(1+u)d[1/(u²-1)]

=[ln(1+u)]/(u²-1)-∫[1/(u²-1)]*[1/(1+u)]du

=[ln(1+u)]/(u²-1)-(1/4)∫{[1/(u-1)]+[1/(1+u)]+[2/(1+u)²]}du

=[ln(1+u)]/(u²-1)-(1/4){ln(u-1)+ln(1+u)-[2/(1+u)]}

=[ln(1+u)]/(u²-1)-(1/4){ln(u²-1)-[2/(1+u)]}

=x*ln{1+√[(x+1)/x]} + (1/4)lnx + 2/{1+√[(x+1)/x]}

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

痕九天揽月
游戏玩家

2021-08-26 · 游戏我都懂点儿,问我就对了
知道小有建树答主
回答量:881
采纳率:100%
帮助的人:22.2万
展开全部

不定积分ln(1+根号下((1+x)/x))dx,解题过程如下:

设 (x+1)/x=u²,则 x=1/(u²-1)

∫ln{1+√[(x+1)/x]} dx

=∫ln(1+u)d[1/(u²-1)]

=[ln(1+u)]/(u²-1)-∫[1/(u²-1)]*[1/(1+u)]du

=[ln(1+u)]/(u²-1)-(1/4)∫{[1/(u-1)]+[1/(1+u)]+[2/(1+u)²]}du

=[ln(1+u)]/(u²-1)-(1/4){ln(u-1)+ln(1+u)-[2/(1+u)]}

=[ln(1+u)]/(u²-1)-(1/4){ln(u²-1)-[2/(1+u)]}

=x*ln{1+√[(x+1)/x]} + (1/4)lnx + 2/{1+√[(x+1)/x]}

不可积函数:

虽然很多函数都可通过如上的各种手段计算其不定积分,但这并不意味着所有的函数的原函数都可以表示成初等函数的有限次复合,原函数不可以表示成初等函数的有限次复合的函数称为不可积函数。

利用微分代数中的微分Galois理论可以证明。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数码宝贝7Q
2021-08-21 · TA获得超过5445个赞
知道小有建树答主
回答量:1044
采纳率:100%
帮助的人:19.6万
展开全部

具体回答如下:

设 (x+1)/x=u²,则 x=1/(u²-1)

∫ln{1+√[(x+1)/x]} dx

=∫ln(1+u)d[1/(u²-1)]

=[ln(1+u)]/(u²-1)-∫[1/(u²-1)]*[1/(1+u)]

=[ln(1+u)]/(u²-1)-(1/4)∫{[1/(u-1)]+[1/(1+u)]+[2/(1+u)²]}

=[ln(1+u)]/(u²-1)-(1/4){ln(u-1)+ln(1+u)-[2/(1+u)]}

=x*ln{1+√[(x+1)/x]} + (1/4)lnx + 2/{1+√[(x+1)/x]}

不定积分的意义:

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2023-08-03 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1642万
展开全部

简单分析一下,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2019-05-17
展开全部


写着过程主要是给思路

追答
图中有些地方写是错的 
但思路是对的 你参考参考就好
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式