1个回答
展开全部
(sinx)^n(cosx)^n=(sinxcosx)^n=2^(-n)(2sinxcosx)^n=2^(-n)(sin2x)^n
则∫(sinx)^n(cosx)^ndx=∫2^(-n)(sin2x)^ndx
凑微分
2^(-n-1)∫(sin2x)^nd2x
令t=2x, 则积分区间变为:
x=0, t=0,
x=π/2, t=π
所以,原式=2^(-n-1)∫(0,π)(sint)^ndt
=∫(0,π)sint^ndt=∫(0,π/2)sint^ndt+∫(π/2,π)sint^ndt
对第2个积分,设xt=π-m ,则dt=-dm
t积分区间:π/2,到π,
m从π/2,到0, 于是:
∫(π/2,π)sint^ndx=-∫(π/2,0)sin(π-m)^ndm=∫(0,π/2)sinm^ndm=∫(0,π/2)sinm^ndm
所以:
∫(0,π)sint^ndt=2∫(0,π/2)sint^ndt
所以:∫(0, π/2)(sinx)^n(cosx)^ndx=2∫(0,π/2)2^(-n)(sin2x)^ndx
则∫(sinx)^n(cosx)^ndx=∫2^(-n)(sin2x)^ndx
凑微分
2^(-n-1)∫(sin2x)^nd2x
令t=2x, 则积分区间变为:
x=0, t=0,
x=π/2, t=π
所以,原式=2^(-n-1)∫(0,π)(sint)^ndt
=∫(0,π)sint^ndt=∫(0,π/2)sint^ndt+∫(π/2,π)sint^ndt
对第2个积分,设xt=π-m ,则dt=-dm
t积分区间:π/2,到π,
m从π/2,到0, 于是:
∫(π/2,π)sint^ndx=-∫(π/2,0)sin(π-m)^ndm=∫(0,π/2)sinm^ndm=∫(0,π/2)sinm^ndm
所以:
∫(0,π)sint^ndt=2∫(0,π/2)sint^ndt
所以:∫(0, π/2)(sinx)^n(cosx)^ndx=2∫(0,π/2)2^(-n)(sin2x)^ndx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询