这个高数题怎么解答,求步骤?
3个回答
展开全部
3^n/n! >0
3^n/n!
=(3/1)(3/2)(3/3)(3/4)(3/5)...(3/n)
=(3/1)(3/2)(3/3) [(3/4)(3/5)...(3/n)]
=(9/2)[(3/4)(3/5)...(3/n)]
<(9/2)(3/4)^(n-3)
lim(n->∞) (9/2)(3/4)^(n-3) =0
=>lim(n->∞) 3^n/n! =0
3^n/n!
=(3/1)(3/2)(3/3)(3/4)(3/5)...(3/n)
=(3/1)(3/2)(3/3) [(3/4)(3/5)...(3/n)]
=(9/2)[(3/4)(3/5)...(3/n)]
<(9/2)(3/4)^(n-3)
lim(n->∞) (9/2)(3/4)^(n-3) =0
=>lim(n->∞) 3^n/n! =0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用夹逼定理,3^n/n!=3/1·3/2·……·3/n
当n≥3时0<3^n/n!≤3/1·3/2·3/n=27/(2n)
∵lim(n→∞)0=0,lim(n→∞)27/(2n)=0
∴lim(n→∞)3^n/n!=0
当n≥3时0<3^n/n!≤3/1·3/2·3/n=27/(2n)
∵lim(n→∞)0=0,lim(n→∞)27/(2n)=0
∴lim(n→∞)3^n/n!=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
3^n/n! = 3^4/4! * 3^(n-4)/(n!/4!)
<= 3^4 /4! * (3/4)^(n-4) =0
<= 3^4 /4! * (3/4)^(n-4) =0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询