求定积分,被积函数的分子是ln(x+1),分母是x的平方加一,上限是1下限是0
展开全部
先不管上下限,求不定积分的.
令t=ln(x+1);可得x=e^t-1;
所以dx=e^tdt=d(e^t);
所以原式=t*e^tdt/((e^t-1)^2+1);
由于
e^tdt/((e^t-1)^2+1)=d(arctan(e^t-1));
由dx/(x^2+1)=d(arctanx);
所以由分步积分有:
原式=t*d(arctan(e^t-1))
=t*arctan(e^t-1)-arctan(e^t-1)dt=t*arctan(e^t-1)-arctan(e^t-1)/e^td(e^t-1)
中间要求一个反正切的不定积分,可以利用分步积分 法,这里直接用:
arctan(x)dx=x*arctanx-ln(x^2+1)/2
所以有原式=t*arctan(e^t-1)-((e^t-1)*arctan(e^t-1)-ln((e^t-1)^2+1)/2)/e^t;
把t=ln(x+1)代回,或者改变上下限也行,就可以得到答案.
由于不定积分,有些东西不好打,所以有打错的东西,请更正,
令t=ln(x+1);可得x=e^t-1;
所以dx=e^tdt=d(e^t);
所以原式=t*e^tdt/((e^t-1)^2+1);
由于
e^tdt/((e^t-1)^2+1)=d(arctan(e^t-1));
由dx/(x^2+1)=d(arctanx);
所以由分步积分有:
原式=t*d(arctan(e^t-1))
=t*arctan(e^t-1)-arctan(e^t-1)dt=t*arctan(e^t-1)-arctan(e^t-1)/e^td(e^t-1)
中间要求一个反正切的不定积分,可以利用分步积分 法,这里直接用:
arctan(x)dx=x*arctanx-ln(x^2+1)/2
所以有原式=t*arctan(e^t-1)-((e^t-1)*arctan(e^t-1)-ln((e^t-1)^2+1)/2)/e^t;
把t=ln(x+1)代回,或者改变上下限也行,就可以得到答案.
由于不定积分,有些东西不好打,所以有打错的东西,请更正,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询