(17)
f(x)=lim(n->∞) [x^2+e^[n(1-x)]/[2+e^[n(1-x)]
case 1: x<1
f(x)
=lim(n->∞) [x^2+e^[n(1-x)]/[2+e^[n(1-x)]
=(x^2+0)/(2+0)
=(1/2)x^2
case 2 : x=1
f(1)
=lim(n->∞) [1^2+e^[n(1-1)]/[2+e^[n(1-1)]
=(1+1)/(2+1)
=2/3
case 3: x>1
f(x)
=lim(n->∞) [x^2+e^[n(1-x)]/[2+e^[n(1-x)]
分子分母同时除以 e^[n(1-x)】
=lim(n->∞) [x^2/e^[n(1-x)] +1 ]/{2/e^[n(1-x)] +1}
=(0+1)/(0+1)
=1
ie
f(x)
=(1/2)x^2 ; x<1
=2/3 ; x=1
=1 ; x>1
f(1-) =lim(x->1-) (1/2)x^2 = 1/2
f(1) =2/3
f(1+) =1
x=1, 第1类间断点 ( 跳跃间断点)