怎么用spss神经网络来分类数据

 我来答
巴绮兰ba
2019-04-22 · TA获得超过4.1万个赞
知道小有建树答主
回答量:1135
采纳率:65%
帮助的人:42.1万
展开全部
用spss神经网络分类数据方法如下:

神经网络算法能够通过大量的历史数据,逐步建立和完善输入变量到输出结果之间的发展路径,也就是神经网络,在这个神经网络中,每条神经的建立以及神经的粗细(权重)都是经过大量历史数据训练得到的,数据越多,神经网络就越接近真实。神经网络建立后,就能够通过不同的输入变量值,预测输出结果。例如,银行能够通过历史申请贷款的客户资料,建立一个神经网络模型,用于预测以后申请贷款客户的违约情况,做出是否贷款给该客户的决策。本篇文章将用一个具体银行案例数据,介绍如何使用SPSS建立神经网络模型,用于判断将来申请贷款者的还款能力。

选取历史数据建立模型,一般会将历史数据分成两大部分:训练集和验证集,很多分析者会直接按照数据顺序将前70%的数据作为训练集,后30%的数据作为验证集。如果数据之间可以证明是相互独立的,这样的做法没有问题,但是在数据收集的过程中,收集的数据往往不会是完全独立的(变量之间的相关关系可能没有被分析者发现)。因此,通常的做法是用随机数发生器来将历史数据随机分成两部分,这样就能够尽量避免相同属性的数据被归类到一个数据集当中,使得建立的模型效果能够更加优秀。

在具体介绍如何使用SPSS软件建立神经网络模型的案例之前,先介绍SPSS的另外一个功能:随机数发生器。SPSS的随机数发生器常数的随机数据不是真正的随机数,而是伪随机数。伪随机数是由算法计算得出的,因此是可以预测的。当随机种子(算法参数)相同时,对于同一个随机函数,得出的随机数集合是完全相同的。与伪随机数对应的是真随机数,它是真正的随机数,无法预测也没有周期性。目前大部分芯片厂商都集成了硬件随机数发生器,例如有一种热噪声随机数发生器,它的原理是利用由导体中电子的热震动引起的热噪声信号,作为随机数种子。
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
低亿卉3397
2019-04-22 · TA获得超过5863个赞
知道大有可为答主
回答量:8510
采纳率:0%
帮助的人:892万
展开全部
不能只训练,用clementine做,我替别人做这类的数据分析蛮多的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式