3个回答
展开全部
(11)
let
x=sinu
dx=cosu du
x=1/√2 , u=π/4
x=1, u=π/2
∫(1/√2->1) √(1-x^2)/x^2 dx
=∫(π/4->π/2) (cotu)^2 du
=∫(π/4->π/2) [ (cscu)^2 -1] du
=[-cotu -u]|(π/4->π/2)
=( 1+π/4) -π/2
=1 - π/4
(12)
let
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2)]
=∫(π/4->π/3) (secu)^2 du/[(tanu)^2.secu]
=∫(π/4->π/3) (secu)/(tanu)^2 du
=∫(π/4->π/3) (cosu)/(sinu)^2 du
=∫(π/4->π/3) dsinu/(sinu)^2
=-[1/sinu]|(π/4->π/3)
=√2 - 2/√3
=√2 - (2/3)√3
let
x=sinu
dx=cosu du
x=1/√2 , u=π/4
x=1, u=π/2
∫(1/√2->1) √(1-x^2)/x^2 dx
=∫(π/4->π/2) (cotu)^2 du
=∫(π/4->π/2) [ (cscu)^2 -1] du
=[-cotu -u]|(π/4->π/2)
=( 1+π/4) -π/2
=1 - π/4
(12)
let
x=tanu
dx=(secu)^2 du
x=1, u=π/4
x=√3, u=π/3
∫(1->√3) dx/[x^2.√(1+x^2)]
=∫(π/4->π/3) (secu)^2 du/[(tanu)^2.secu]
=∫(π/4->π/3) (secu)/(tanu)^2 du
=∫(π/4->π/3) (cosu)/(sinu)^2 du
=∫(π/4->π/3) dsinu/(sinu)^2
=-[1/sinu]|(π/4->π/3)
=√2 - 2/√3
=√2 - (2/3)√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(11)
令x=sint,则dx= cost dt,积分范围由[1/√2,1]变为[π/4,π/2]
原积分
=∫cos²t/sin²t *dt
=∫(1/sin²t-1)*dt
=-cot(t)-t
= 0-π/2+1+π/4
=1-π/4
(12)
令x=tant,则dx=dt/(cos²t) 积分范围由[1,√3]变为[π/4,π/3]
原积分
=∫cost/sin²t *dt
= ∫1/sin²t *dsint
= -1/sint
= √2-2/√3
= √2-2√3/3
令x=sint,则dx= cost dt,积分范围由[1/√2,1]变为[π/4,π/2]
原积分
=∫cos²t/sin²t *dt
=∫(1/sin²t-1)*dt
=-cot(t)-t
= 0-π/2+1+π/4
=1-π/4
(12)
令x=tant,则dx=dt/(cos²t) 积分范围由[1,√3]变为[π/4,π/3]
原积分
=∫cost/sin²t *dt
= ∫1/sin²t *dsint
= -1/sint
= √2-2/√3
= √2-2√3/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
11题,令sint=x,dx=costdt
原式=cost/sint^2*costdt=cost^2/sint^2dt=[1/sint^2-1]dt
原式=cost/sint^2*costdt=cost^2/sint^2dt=[1/sint^2-1]dt
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询