定积分题。。。
2个回答
展开全部
∫(上限π,下限0) x*sinx/[1+(cosx)^2] dx
=∫(上限π/2,下限-π/2) [t-(π/2)]*sin[t-(π/2)]/[1+(cos(t-(π/2))^2] dt,其中t=x+(π/2)
=∫(上限π/2,下限-π/2) [-t*cost + (π/2)cost]/[1+(sint)^2] dt
=∫(上限π/2,下限-π/2) (-t*cost)/[1+(sint)^2] dt + (π/2) ∫(上限π/2,下限-π/2) cost/[1+(sint)^2] dt
=(π/2) ∫(上限π/2,下限-π/2) cost/[1+(sint)^2] dt
=(π/2) ∫(上限1,下限-1) 1/(1+x^2) dx,其中x=sint
=π ∫(上限1,下限0) 1/(1+x^2) dx
=π*arctanx | (上限1,下限0)
=(1/4)π^2
=∫(上限π/2,下限-π/2) [t-(π/2)]*sin[t-(π/2)]/[1+(cos(t-(π/2))^2] dt,其中t=x+(π/2)
=∫(上限π/2,下限-π/2) [-t*cost + (π/2)cost]/[1+(sint)^2] dt
=∫(上限π/2,下限-π/2) (-t*cost)/[1+(sint)^2] dt + (π/2) ∫(上限π/2,下限-π/2) cost/[1+(sint)^2] dt
=(π/2) ∫(上限π/2,下限-π/2) cost/[1+(sint)^2] dt
=(π/2) ∫(上限1,下限-1) 1/(1+x^2) dx,其中x=sint
=π ∫(上限1,下限0) 1/(1+x^2) dx
=π*arctanx | (上限1,下限0)
=(1/4)π^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询