一道直角三角形三边关系数学题
展开全部
AC·BC·sin(α+β)=AC·CD·sinα+BC·CD·sinβ
就是△ABC的面积等于△ADC面积与△DBC面积之和
AC=sin90/sin(90-α)×CD=CD/√[1-(sinα)^2]
BC=sin90/sin(90-β)×CD=CD/√[1-(sinβ)^2]
代入原式:CD/√[1-(sinα)^2]×CD/√[1-(sinβ)^2]sin(α+β)=CD/√[1-(sinα)^2]·CD·sinα+CD/√[1-(sinβ)^2]·CD·sinβ
即:sin(α+β)/{√[1-(sinα)^2]×/√[1-(sinβ)^2]}=sinα/√[1-(sinα)^2]+sinβ/√[1-(sinβ)^2
sin(α+β)=
就是△ABC的面积等于△ADC面积与△DBC面积之和
AC=sin90/sin(90-α)×CD=CD/√[1-(sinα)^2]
BC=sin90/sin(90-β)×CD=CD/√[1-(sinβ)^2]
代入原式:CD/√[1-(sinα)^2]×CD/√[1-(sinβ)^2]sin(α+β)=CD/√[1-(sinα)^2]·CD·sinα+CD/√[1-(sinβ)^2]·CD·sinβ
即:sin(α+β)/{√[1-(sinα)^2]×/√[1-(sinβ)^2]}=sinα/√[1-(sinα)^2]+sinβ/√[1-(sinβ)^2
sin(α+β)=
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询