如图,已知E为平行四边形ABCD外一点,且AE⊥EC,BE⊥ED,求证:平行四边形ABCD是矩形。

 我来答
米兰易桥
2020-02-27
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
证明:
平行四边形ABCD,可得:对角线平分,不妨假设AC与BD的交点为O,则AO=OC;BO=OD。
AE⊥EC,BE⊥ED,则:E为以AC直径的圆上一点,同理,也是以BD为直径的圆上的一点。
根据AO=OC,则O为前述构成圆的圆心,两个圆都是。而E为圆上的点,所以,O也是直径的中心,即:AO=OC=OE;同理,BO=OD=OE。
二者联立得:AO=OC=OE=BO=OD,亦即AC=BD。
再根据四边形ABCD是平行四边形,此时,根据“对角线相等的平行四边形是矩形(根据三角形全等,则其中一角是直角,从而得此判据)”,得平行四边形ABCD是矩形。
证毕。谢谢,请检查。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
厉梓维青卿
2019-10-31
知道答主
回答量:0
采纳率:0%
帮助的人:0
展开全部
连接ABCD的对角线,交于点O,再连接EO,在/_\AEC中,EO=1/2AC,在/_\BED中,EO=1/2BD,所以AC=BD,又因为AC与BD互相平分,所以ABCD为矩形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式