齐次线性方程组系数矩阵的秩与解的情况的关系?

 我来答
帐号已注销
高粉答主

2021-01-20 · 说的都是干货,快来关注
知道小有建树答主
回答量:263
采纳率:95%
帮助的人:10.8万
展开全部

齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解,齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解,n元齐次线性方程组有非零解的充要条件是其系数行列式为零。

齐次线性方程组:有非零解的充要条件是r(A)<n。即系数矩阵A的秩小于未知量的个数。

推论:齐次线性方程组仅有零解的充要条件是r(A)=n。

扩展资料:

性质:

1、齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2、齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3、齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4、n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。(克莱姆法则)。

参考资料来源:百度百科-齐次线性方程组



Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
帐号已注销
2021-01-18 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

若系数矩阵满秩,则齐次线性方程组有且仅有零解,若系数矩阵降秩,则有无穷多解,且基础解系的向量个数等于n-r。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

扩展资料:

称为n元齐次线性方程组。设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:

当r=n时,原方程组仅有零解;

当r<n时,有无穷多个解(从而有非零解)。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

参考资料来源:百度百科-齐次线性方程组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鄢画象星汉
2019-12-10 · TA获得超过3933个赞
知道大有可为答主
回答量:3056
采纳率:29%
帮助的人:405万
展开全部
若系数矩阵满秩,则齐次线性方程组有且仅有零解,若系数矩阵降秩,则有无穷多解,且基础解系的向量个数等于n-r。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式