为什么e的x次方当x趋于无穷大时,极限不存在?
4个回答
展开全部
根据y=e^x可知,当x趋于正无穷大时,y趋于正无穷大,当x趋于负无穷大时,y趋于0。所以,当x趋于无穷时,y=e^x极限不存在。
如果对任意ε>0,存在N∈Z*,只要 n 满足 n > N,则对于任意正整数p,都有|xn+p-xn|<ε,这样的数列{xn} 便称为柯西数列。这种渐进稳定性与收敛性是等价的。即为充分必要条件。
扩展资料:
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
尽管ε有其任意性,但一经给出,就被暂时地确定下来,以便靠它用函数规律来求出N;因此可用它们的数值近似代替ε。同时,正由于ε是任意小的正数,我们可以限定ε小于一个某一个确定的正数。
展开全部
根据y=e^x图像可知,当x趋于正无穷大时,y趋于正无穷大,当x趋于负无穷大时,y趋于0。所以,当x趋于无穷时,y=e^x极限不存在,选A。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这个要分正无穷还是负无穷吧。画个e^x图就可以看出来,负无穷趋近于0,正无穷无限大。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询