在四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=根号2,

 我来答
向丹塞妍
2020-04-22 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:34%
帮助的人:869万
展开全部
做线段ac。在三角形abc中,我们已知ab=2,bc=根号2,角abc=75°。也就是说我们已知两面和一个夹角了,这样很容易用余弦定理求第三边。可以算出:
ac=根号(ab^2+bc^2-2*ab*bc*cos角abc)=2.130
再看三角形adc,因为ad=cd,而且ad,cd的夹角,角adc=60°,所以三角形adc是等边三角形。因为我们已经求出ac=2.13,这样ac=ad=cd=2.130
下面求面积,我们可以用正弦定理分别求出两个三角形的面积,再把他们加起来就是四边形面积了。
三角形abc的面积=0.5*ab*bc*sin角abc=1.366
三角形adc的面积=0.5*ad*cd*sin角adc=1.965
最后四边形abcd的面积=三角形abc的面积+三角形adc的面积=3.331
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
奚玉花错水
2020-03-01 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:665万
展开全部
解:作∠BDE=∠ADC=60度,使DE=DB。连接BE,CE
那么△BDE是正三角形,BE=BD
又∠BDE=∠ADC
则∠CDE=∠ADB
又CD=AD,DE=DB
∴△CDE≌△ADB(边,角,边)
从而CE=AB,∠CED=∠ABD
则△BCE是线段BD,AB,BC作为三边组成的三角形
又∠BCE=∠CED+∠DBC+∠BDE
=∠ABD+∠DBC+60度
=75度+60度=135度
1。
∴以线段BD,AB,BC作为三角形的三边,
1、则这个三角形为钝角三角形。
2。BD边所对的角有∠BCD与∠BAD
其中∠BCD也即BE所对的角,∠BCE
∠BCD=∠BCE=135度
∠BAD=360度-∠ABC-∠ADC-∠BCD
=360度-75度-60度-135度
=360度-270度
=90度
∴BD边所对的角的度数为135度或90度.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
堵元祁莎莎
2019-12-11 · TA获得超过3789个赞
知道大有可为答主
回答量:3110
采纳率:31%
帮助的人:210万
展开全部
连AC,由余弦定理:
AC²=2²+(√2)²-2×2×√2cos75°
=4+2-4√2×(√6-√2)/4
=8-2√3.
S四边形=S△ABC+S△ADC
=2×√2×sin75°/2+AC×(√3/2)AC×1/2
=√2×(√6-2√2+2√3)/4+(8-2√3)×(√3/2)×1/2
=(√3-2+√6)/2+(4√3-3)/2
=(√6+5√3-5)/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式