已知数列{An}满足:a1=1,a2=2,a(n+2)=[an+a(n+1)]/2, 1,求通项公式
1个回答
展开全部
(1)2a(n+2)=an+a(n+1);
∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an];
bn=a(n+1)-an;
∴2b(n+1)=-bn;
即b(n+1)/bn=-1/2;
∴{bn}是等比数列;
(2)b1=a2-a1=2-1=1;
∴{bn}是首项为1,公比为-1/2的等比数列;
∴bn=1×(-1/2)^(n-1);
∴a(n+1)-an=(-1/2)^(n-1);
∴an-a(n-1)=(-1/2)^(n-2);
a(n-1)-a(n-1)=(-1/2)^(n-3);
……
a2-a1=(-1/2)^0;
累加得:an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)];
∴an=a1+(2/3)[1-(-1/2)^(n-1)]=5/3-(2/3)×(-1/2)^(n-1)=5/3+(1/3)×(-1/2)^(n-2)
∴2[a(n+2)-a(n+1)]=an-a(n+1)=-[a(n+1)-an];
bn=a(n+1)-an;
∴2b(n+1)=-bn;
即b(n+1)/bn=-1/2;
∴{bn}是等比数列;
(2)b1=a2-a1=2-1=1;
∴{bn}是首项为1,公比为-1/2的等比数列;
∴bn=1×(-1/2)^(n-1);
∴a(n+1)-an=(-1/2)^(n-1);
∴an-a(n-1)=(-1/2)^(n-2);
a(n-1)-a(n-1)=(-1/2)^(n-3);
……
a2-a1=(-1/2)^0;
累加得:an-a1=(-1/2)^0+……+(-1/2)^(n-3)+(-1/2)^(n-2)=[1-(-1/2)^(n-1)]/(1+1/2)=(2/3)[1-(-1/2)^(n-1)];
∴an=a1+(2/3)[1-(-1/2)^(n-1)]=5/3-(2/3)×(-1/2)^(n-1)=5/3+(1/3)×(-1/2)^(n-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询