f(θ)=【sinθcosθ/(sinθ+cosθ+1)】+sinθcosθ化简?
1个回答
展开全部
主要化简第一个式量sinθcosθ/(sinθ+cosθ+1)
=2sinθ/2cosθ/2*(cosθ/2+sinθ/2)(cosθ/2-sinθ/2)/[2sinθ/2cosθ/2+2(cosθ/2)^2]
=2sinθ/2cosθ/2*(cosθ/2-sinθ/2)(cosθ/2+sinθ/2cosθ/2*[sinθ/2+cosθ/2]
=sinθ/2*(cosθ/2-sinθ/2)
=1/2*sinθ-(sinθ/2)^2=1/2*sinθ+1/2*cosθ-1/2,
=(sinθ+cosθ-1)/2,
f(θ)=(sinθ+cosθ-1)/2+sinθcosθ,属于和积型,一般求最值,
令和sinθ+cosθ=t,范围∈【-√2,,2】,sinθcosθ=(t^2-1)/2,
代入,二次最值问题
=2sinθ/2cosθ/2*(cosθ/2+sinθ/2)(cosθ/2-sinθ/2)/[2sinθ/2cosθ/2+2(cosθ/2)^2]
=2sinθ/2cosθ/2*(cosθ/2-sinθ/2)(cosθ/2+sinθ/2cosθ/2*[sinθ/2+cosθ/2]
=sinθ/2*(cosθ/2-sinθ/2)
=1/2*sinθ-(sinθ/2)^2=1/2*sinθ+1/2*cosθ-1/2,
=(sinθ+cosθ-1)/2,
f(θ)=(sinθ+cosθ-1)/2+sinθcosθ,属于和积型,一般求最值,
令和sinθ+cosθ=t,范围∈【-√2,,2】,sinθcosθ=(t^2-1)/2,
代入,二次最值问题
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询