python数据分析怎么使用,都需要学习什么技术?
Python是一种面向对象、直译式计算机程序设计语言,由Guido van Rossum于1989年底发明。由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。
Python数据分析,主要需要学习以下内容:
1、Python语法基础
2、Python数据分析扩展包:Numpy、Pandas、Matplotlib等
3、Python爬虫基础(非必须,但可以提升兴趣)
4、Python数据探索及预处理
5、Python机器学习
python的下载和安装环境:难点主要是在环境的安装上,很多小白往往一腔热血但是面对环境安装的时候就泄了气,因为我会用Anaconda为例进行环境的安装,同时我建议初学者不要下载具有IDE功能的集成开发环境,比如Eclipse插件等。
数据类型:python的数据类型比较简单,基本上就可以分为两大类——数值和字符串。
数值:数值是python最基础的数据类型,也是我们赋值给变量时最常用的形式,主要包括整型、布尔型等。
字符串:也就是文本数据,在python中一般用引号来定义,可以通过python进行拼接和重叠,实现文本数据的处理;
索引和切片:索引是有序列每个子元素在序列的位置,切片就是对序列的部分截取。
列表:用中括号表示,可以容纳任何对象元素,包括字符串,而且每个元素都可以变化;
元组:其实就是一个固定的列表,初始化元素的值是绝对不能变化的;
字典:可以理解为现实的字典,通过查找拼音(键)就能找到这个读音的所有字(数值);中
集合:数学上的概念,每个集合中的元素是无序的,不可重复的对象;
数据结构:python的数据结构可以分为四种,列表、元组、字典、集合。
数据分析的目的是从数据里找规律,因此想要掌握python必须要学习一些基础的数理理论,这是成为一个数据分析师必备的能力。对于python来说,其涉及的数理统计学基础主要由算法、统计学、概率论等
sql是python的基础,如果你已经掌握了SQL,那么这一章你就可以直接跳过,那么你就要好好学习这部分的内容,因为sql是入门python的关键基础,同时它也是每个数据分析师必备的技能,主要目的是用sql来进行增删改查等操作,对数据进行筛选。
以上的回答希望对你有所帮助