求设f'(x)在[0,a]上连续.f(0)=0,证明|定积分f(x)d(x)<=M/2*a^2|。

 我来答
创作者mFySVF8me1
2020-05-02 · TA获得超过3.7万个赞
知道小有建树答主
回答量:1.5万
采纳率:30%
帮助的人:1045万
展开全部
证明:
由微分中值定理
f(x)-f(0)=f'(xo)(x-0)=f'(xo)x,其中x∈(0,a)
即:f(x)=f'(xo)x,
那么,|f(x)|=|f'(xo)|x≤Mx
上式在[0,a]上积分有
∫(0~a)|f(x)|dx≤M∫(0~a)xdx=Ma²/2
即证.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式