三角函数起源
1个回答
展开全部
其实就是为了研究三角形中角的大小与边的大小的关系,这个研究非常有用,在实际的测量中经常会运用到,因为经常会遇到测量角的大小比较简便,而测量长度则非常困难的情况,比如要测量一座山的高度,直接测量必须要从山顶放铅垂线下来,那可怎么放呢?而测量到山顶的仰角则要简单不少。这个问题的研究经过古代几何学家艰苦卓绝的努力,最后化为正弦定理和余弦定理两个终极答案,彻底解决了三角形边长与角的大小的关系。当然,这个答案不可能一蹴而就,所以一开始是以研究一些特殊的三角形开始的,三角形中比较特殊的无非是等腰、等边、直角三角形,等边三角形角是固定的不方便研究,而等腰三角形显然可以化为两个直角三角形来研究,那么最重要的就是直角三角形的问题了。
如果这个关系是个很简单的关系,那么最后也不会有什么三角函数,直接写一条公式就行了,问题在于三角函数一般情况下是无法通过四则运算、乘开方计算出来的,既然没有闭形式表达的方法,那么无可奈何之下就只能给它一个函数的名字了,然后研究这些函数的和差、乘积的公式,通过特殊角的三角函数间接计算出更多的角度的函数值,中间值则通过插值的方法得到,然后编制成表格来使用。这些都是测绘、航海等领域实际需要使用的技术。
推导三角函数公式和计算数值的时候,正弦和余弦使用的最广泛(因为正弦定理和余弦定理)必须要有,而且这两个通常都是成对出现;正切的和差公式里都只包含正切,而且其他三角函数都可以完全用正切来表示(万能公式),这样用正切来做数值计算会有一定的优势。另外三个则是这三个函数的倒数,提前算出来就省得做除法了。
后来发现三角函数还有广泛得多的使用领域,以及它和指数函数的关系,这是后话了。
如果这个关系是个很简单的关系,那么最后也不会有什么三角函数,直接写一条公式就行了,问题在于三角函数一般情况下是无法通过四则运算、乘开方计算出来的,既然没有闭形式表达的方法,那么无可奈何之下就只能给它一个函数的名字了,然后研究这些函数的和差、乘积的公式,通过特殊角的三角函数间接计算出更多的角度的函数值,中间值则通过插值的方法得到,然后编制成表格来使用。这些都是测绘、航海等领域实际需要使用的技术。
推导三角函数公式和计算数值的时候,正弦和余弦使用的最广泛(因为正弦定理和余弦定理)必须要有,而且这两个通常都是成对出现;正切的和差公式里都只包含正切,而且其他三角函数都可以完全用正切来表示(万能公式),这样用正切来做数值计算会有一定的优势。另外三个则是这三个函数的倒数,提前算出来就省得做除法了。
后来发现三角函数还有广泛得多的使用领域,以及它和指数函数的关系,这是后话了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询