罗尔定理证明是什么?

 我来答
热爱生活的小斌
高能答主

2022-01-08 · 我们生活在比较之中,有黑暗才有光明。
热爱生活的小斌
采纳数:779 获赞数:21560

向TA提问 私信TA
展开全部

证明如下:

因为函数 f(x) 在闭区间[a,b] 上连续,所以存在最大值与最小值,分别用 M 和 m 表示,分两种情况讨论:

1、若 M=m,则函数 f(x) 在闭区间 [a,b] 上必为常函数,结论显然成立。

2、若 M>m,则因为 f(a)=f(b) 使得最大值 M 与最小值 m 至少有一个在 (a,b) 内某点ξ处取得,从而ξ是f(x)的极值点,又条件 f(x) 在开区间 (a,b) 内可导得,f(x) 在 ξ 处取得极值,由费马引理推知:f'(ξ)=0。

注意罗尔定理要求的条件

如果函数在区间内的某个点不可导,则罗尔定理的结论不一定成立。对于某个a > 0,考虑绝对值函数:f(x)=|x| x取值在[-a,a]。

虽然f(−a) = f(a),但−a和a之间不存在导数为零的点。这是因为,函数虽然是连续的,但它在点x = 0不可导。因此就不存在 f'(ε)=0。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式