dx/√1+x^2积分是什么?
1个回答
展开全部
可用分部积分法:
∫√(1+x²)dx。
=x√(1+x²)-∫[x²/√(1+x²)]。
=x√(1+x²)-∫[(1+x²-1)/√(1+x²)]dx。
=x√(1+x²)-∫√(1+x²)dx+∫[1/√(1+x²)]。
移项得:
∫√(1+x²)dx。
=(x/2)√(1+x²)+(1/2)∫[1/√(1+x²)]dx。
=(x/2)√(1+x²)+(1/2)ln|x+√(1+x²)|+C。
积分基本公式
1、∫0dx=c
2、∫x^udx=(x^u+1)/(u+1)+c
3、∫1/xdx=ln|x|+c
4、∫a^xdx=(a^x)/lna+c
5、∫e^xdx=e^x+c
6、∫sinxdx=-cosx+c
7、∫cosxdx=sinx+c
8、∫1/(cosx)^2dx=tanx+c
9、∫1/(sinx)^2dx=-cotx+c
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询