已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1...
已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点,直线l经过点F2,倾斜角为4...
已知椭圆:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别为F1、F2,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点,直线l经过点F2,倾斜角为45°,与椭圆交于A,B两点. (1)若|F1F2|=2√2,求椭圆方程 (2)对(1)中椭圆,求三角形ABF1的面积 (3)若M为椭圆上一点,若存在实数入,μ使得向量OM=入OA+μOB试确定入 μ关系式
展开
1个回答
展开全部
(1)
长轴的一个端点与短轴两个端点组成等边三角形,a=√3b
c=√2,c^2=a^2-b^2=3b^2-b^2=2b^2=2
b=1,a=√3
x^2/3+y^2=1
(2)
直线方程:x=y+√2
与椭圆方程联立:(y+√2)^2+3y^2-3=0,
4y^2+2√2y-1=0
y1+y2=-√2/2,y1y2=-1/4
|y1-y2|=√[(y1+y2)^2-4y1y2]=√(3/2)=√6/2
S=|F1F2|*|y1-y2|*(1/2)=2√2*√6/2*1/2=√3
(3)
直线方程:x=y+√2
椭圆方程:x^2/(3b^2)+y^2/b^2=1
联立得:(y+√2)^2+3y^2-3b^2=0
4y^2+2√2y+2-3b^2=0
y1+y2=-√2/2,y1y2=(2-3b^2)/4
OM=入OA+μOB=(入x1+μx2,入y1+μy2)
M在椭圆上:(入x1+μx2)^2/(3b^2)+(入y1+μy2)/b^2=1
一
A在椭圆上:x1^2/(3b^2)+y1^2/b^2=1
二
B在椭圆上:x2^2/(3b^2)+y2^2/b^2=1
三
(一)-入^2*(二)-μ^2*(三):
2入μx1x2/(3b^2)+2入μy1y2/b^2=1-入^2-μ^2
[2入μ/(3b^2)]*(x1x2+3y1y2)=1-入^2-μ^2
x1x2=(y1+√2)*(y2+√2)=y1y2+√2(y1+y2)+2=(2-3b^2)/4-1+2=(6-3b^2)/4
x1x2+3y1y2=(6-3b^2)/4+3*(2-3b^2)/4=3-3b^2
[2入μ/(3b^2)]*(3-3b^2)=1-入^2-μ^2
此为入μ的关系式.这里题目没说清楚,如果可以沿用前两问中的椭圆,则可以代入b=1:入^2+μ^2=1
长轴的一个端点与短轴两个端点组成等边三角形,a=√3b
c=√2,c^2=a^2-b^2=3b^2-b^2=2b^2=2
b=1,a=√3
x^2/3+y^2=1
(2)
直线方程:x=y+√2
与椭圆方程联立:(y+√2)^2+3y^2-3=0,
4y^2+2√2y-1=0
y1+y2=-√2/2,y1y2=-1/4
|y1-y2|=√[(y1+y2)^2-4y1y2]=√(3/2)=√6/2
S=|F1F2|*|y1-y2|*(1/2)=2√2*√6/2*1/2=√3
(3)
直线方程:x=y+√2
椭圆方程:x^2/(3b^2)+y^2/b^2=1
联立得:(y+√2)^2+3y^2-3b^2=0
4y^2+2√2y+2-3b^2=0
y1+y2=-√2/2,y1y2=(2-3b^2)/4
OM=入OA+μOB=(入x1+μx2,入y1+μy2)
M在椭圆上:(入x1+μx2)^2/(3b^2)+(入y1+μy2)/b^2=1
一
A在椭圆上:x1^2/(3b^2)+y1^2/b^2=1
二
B在椭圆上:x2^2/(3b^2)+y2^2/b^2=1
三
(一)-入^2*(二)-μ^2*(三):
2入μx1x2/(3b^2)+2入μy1y2/b^2=1-入^2-μ^2
[2入μ/(3b^2)]*(x1x2+3y1y2)=1-入^2-μ^2
x1x2=(y1+√2)*(y2+√2)=y1y2+√2(y1+y2)+2=(2-3b^2)/4-1+2=(6-3b^2)/4
x1x2+3y1y2=(6-3b^2)/4+3*(2-3b^2)/4=3-3b^2
[2入μ/(3b^2)]*(3-3b^2)=1-入^2-μ^2
此为入μ的关系式.这里题目没说清楚,如果可以沿用前两问中的椭圆,则可以代入b=1:入^2+μ^2=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询