已知a∈R,函数fx=(-x^2+ax)e^x 若函数fx在(-1,1)上单调递减,求a的取值范围

 我来答
银敏其芬芬
2020-06-24 · TA获得超过1052个赞
知道小有建树答主
回答量:1757
采纳率:76%
帮助的人:8.3万
展开全部
f'(x)=e^x(-x^2+ax)+e^x(-2x+a)=e^x(-x^2+ax-2x+a)
令f'(x)=0,得-x^2+ax-2x+a=0,
化简,x^2-ax+2x-a=0.1
1)、当a=2时,1式就是x^2-2=0,得x=√2或x=-√2
一、x∈(-∞,-√2〕时,f'(x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式