求级数 ∑(x-3)^n / n-n^3 的收敛半径和收敛域! 最好把步骤写下 尤其是收敛域

 我来答
集元檀雨筠
2019-05-25 · TA获得超过1215个赞
知道小有建树答主
回答量:1664
采纳率:94%
帮助的人:9.1万
展开全部
令t=x-3,级数变为∑t^n/(n-n^3),ρ=lim(n→∞)|a(n+1)/an|=lim(n→∞)|n(1-n^2)/(n+1)((n+1)^2-1)|=lim(n→∞) n/(n+2)=1,所以收敛半径为R=1
因为lim(n→∞) |1/(n^3-n)/(1/n^3)|=lim(n→∞) n^2/(n^2-1)=1,所以级数∑1/(n^3-n)收敛,所以t=±1时,级数∑t^n/(n-n^3)都收敛,所以收敛域是[-1,1]
所以,原级数∑(x-3)^n/(n-n^3)的收敛域是|x-3|≤1,即[2,4],收敛半径是1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式