展开全部
(10)
f(x)
=sinx ; π/3≤x≤π
=0 ; elsewhere
∫(0->π) f(x)cos2x dx
=∫(π/3->π) sinx.cos2x dx
=-∫(π/3->π) cos2x dcosx
=∫(π/3->π) [ 1-2(cosx)^2] dcosx
=[ cosx - (2/3)(cosx)^3]|(π/3->π)
=[-1+2/3] -[ 1/2 - (2/3)(1/8) ]
=-1/3 - 5/12
=-(4+5)/12
=-9/12
=-3/4
ans:B
f(x)
=sinx ; π/3≤x≤π
=0 ; elsewhere
∫(0->π) f(x)cos2x dx
=∫(π/3->π) sinx.cos2x dx
=-∫(π/3->π) cos2x dcosx
=∫(π/3->π) [ 1-2(cosx)^2] dcosx
=[ cosx - (2/3)(cosx)^3]|(π/3->π)
=[-1+2/3] -[ 1/2 - (2/3)(1/8) ]
=-1/3 - 5/12
=-(4+5)/12
=-9/12
=-3/4
ans:B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询