3个回答
展开全部
导数(Derivative)是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。
右上图为函数y=(x) 的图象,函数在x_0处的导数′(x_0) = lim{Δx→0} [(x_0 +Δx) -(x_0)] /Δx。如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作′(x)或 dy/ dx。
导数定义
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
折叠编辑本段导数的起源
一.早期导数概念----特殊的形式
大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
二.17世纪----广泛使用的“流数术”
17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”;他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三.19世纪导数----逐渐成熟的理论
1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四.实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
折叠编辑本段导函数
一般地假设一元函数 y=f(x )在 点x0的某个邻域N(x0δ)内有定义当自变量取的增量Δx=x-x0时函数相应增量为 △y=f(x0+△x)-f(x0)。若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限就说函数f(x)在x0点可导并将这个极限称之为f在x0点的导数或变化率。
“点动成线”若函数f在区间I 的每一点都可导便得到一个以I为定义域的新函数记作 f'(x) 或y'称之为f的导函数不能简称为导数.
折叠编辑本段几何意义
函数y=f(x)在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率
导数的几何意义是该函数曲线在这一点上的切线斜率.
折叠编辑本段科学应用
导数与物理几何代数关系密切.在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度.
导数亦名纪数、微商微分中的概念是由速度变化问题和曲线的切线问题矢量速度的方向而抽象出来的数学概念.又称变化率.
如一辆汽车在10小时内走了 600千米它的平均速度是60千米/小时.但在实际行驶过程中是有快慢变化的不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况可以缩短时间间隔设汽车所在位置s与时间t的关系为: s=ft
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
[f(t1)-f(t0)]/[t1-t0]
当 t1与t0无限趋近于零时汽车行驶的快慢变化就不会很大瞬时速度就近似等于平均速度 .
自然就把当t1→t0时的极限lim[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度这就是通常所说的速度.这实际上是由平均速度类比到瞬时速度的过程 如我们驾驶时的限“速” 指瞬时速度
右上图为函数y=(x) 的图象,函数在x_0处的导数′(x_0) = lim{Δx→0} [(x_0 +Δx) -(x_0)] /Δx。如果函数在连续区间上可导,则函数在这个区间上存在导函数,记作′(x)或 dy/ dx。
导数定义
一、导数第一定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有增量△x ( x0 + △x 也在该邻域内 ) 时相应地函数取得增量 △y = f(x0 + △x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
二、导数第二定义
设函数 y = f(x) 在点 x0 的某个邻域内有定义当自变量x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时相应地函数变化 △y = f(x) - f(x0) 如果 △y 与 △x 之比当 △x→0 时极限存在则称函数 y = f(x) 在点 x0 处可导并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第二定义
三、导函数与导数
如果函数 y = f(x) 在开区间I内每一点都可导就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值都对应着一个确定的导数这就构成一个新的函数称这个函数为原来函数 y = f(x) 的导函数记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
折叠编辑本段导数的起源
一.早期导数概念----特殊的形式
大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f'(A)。
二.17世纪----广泛使用的“流数术”
17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”;他称变量为流量,称变量的变化率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。
三.19世纪导数----逐渐成熟的理论
1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。
四.实无限将异军突起微积分第二轮初等化或成为可能 微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。
就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。
光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。
折叠编辑本段导函数
一般地假设一元函数 y=f(x )在 点x0的某个邻域N(x0δ)内有定义当自变量取的增量Δx=x-x0时函数相应增量为 △y=f(x0+△x)-f(x0)。若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限就说函数f(x)在x0点可导并将这个极限称之为f在x0点的导数或变化率。
“点动成线”若函数f在区间I 的每一点都可导便得到一个以I为定义域的新函数记作 f'(x) 或y'称之为f的导函数不能简称为导数.
折叠编辑本段几何意义
函数y=f(x)在x0点的导数f'x0的几何意义表示函数曲线在P0[x导数的几何意义0fx0] 点的切线斜率
导数的几何意义是该函数曲线在这一点上的切线斜率.
折叠编辑本段科学应用
导数与物理几何代数关系密切.在几何中可求切线在代数中可求瞬时变化率在物理中可求速度加速度.
导数亦名纪数、微商微分中的概念是由速度变化问题和曲线的切线问题矢量速度的方向而抽象出来的数学概念.又称变化率.
如一辆汽车在10小时内走了 600千米它的平均速度是60千米/小时.但在实际行驶过程中是有快慢变化的不都是60千米/小时.为了较好地反映汽车在行驶过程中的快慢变化情况可以缩短时间间隔设汽车所在位置s与时间t的关系为: s=ft
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
[f(t1)-f(t0)]/[t1-t0]
当 t1与t0无限趋近于零时汽车行驶的快慢变化就不会很大瞬时速度就近似等于平均速度 .
自然就把当t1→t0时的极限lim[f(t1)-f(t0)]/[t1-t0] 作为汽车在时刻t0的瞬时速度这就是通常所说的速度.这实际上是由平均速度类比到瞬时速度的过程 如我们驾驶时的限“速” 指瞬时速度
展开全部
导数,个人认为可以理解为“引导”的意思。当某点的导数值大于0,就是说该点会被引导往上走;当某点的导数值小于0,就是说该点会被引导往下走;当某点导数值等于0,就是说该点会被引导水平向右走。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
导数是函数在某点的切线斜率,一般导数为0时,函数可能取得极值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询