求解微分方程dy/dt=1/(t-y)+1 求积分曲线的表达式
1个回答
展开全部
令t-y=u,则y=t-u,dy/dt=1-du/dt
原式变为1-du/dt=1/u+1,得:udu=-dt,两边同步分别积分有u²/2=C-t
代回变量有(t-y)²/2=C-t
所以,原方程为(y-t)²=2(C-t) (C为任意实数)
原式变为1-du/dt=1/u+1,得:udu=-dt,两边同步分别积分有u²/2=C-t
代回变量有(t-y)²/2=C-t
所以,原方程为(y-t)²=2(C-t) (C为任意实数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询