下列条件中,不能判断四边形ABCD是平行四边形的是( )A.AB∥CD,A...
下列条件中,不能判断四边形ABCD是平行四边形的是()A.AB∥CD,AD∥BCB.AB=CD,AD=BCC.AB∥CD,AD=BCD.AB∥CD,AB=CD...
下列条件中,不能判断四边形ABCD是平行四边形的是( )A.AB∥CD,AD∥BCB.AB=CD,AD=BCC.AB∥CD,AD=BCD.AB∥CD,AB=CD
展开
2个回答
展开全部
A
试题分析:根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.
A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.
故选C.
考点:本题主要考查平行四边形的判定
点评:解题的关键是熟练掌握平行四边形的判定定理:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
试题分析:根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.
A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.
故选C.
考点:本题主要考查平行四边形的判定
点评:解题的关键是熟练掌握平行四边形的判定定理:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
展开全部
A
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.
A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.
故选C.分析:
考点1:四边形
四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。
根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.
A、AB∥CD,AD∥BC,可以根据:两组对边分别平行的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
B、AB=CD,AD=BC,可以根据:两组对边分别相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意;
C、AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故此选项符合题意;
D、AB∥CD,AB=CD,可以根据:一组对边平行且相等的四边形是平行四边形,判定四边形ABCD是平行四边形,故此选项不符合题意.
故选C.分析:
考点1:四边形
四边形:四边形的初中数学中考中的重点内容之一,分值一般为10-14分,题型以选择,填空,解答证明或融合在综合题目中为主,难易度为中。主要考察内容:①多边形的内角和,外角和等问题②图形的镶嵌问题③平行四边形,矩形,菱形,正方形,等腰梯形的性质和判定。突破方法:①掌握多边形,四边形的性质和判定方法。熟记各项公式。②注意利用四边形的性质进行有关四边形的证明。③注意开放性题目的解答,多种情况分析。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询