在三棱锥V-ABC中,VA,VB,VC两两互相垂直,VA=VB=VC=1,计算V到平面ABC的距离

 我来答
机器1718
2022-06-19 · TA获得超过6821个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:159万
展开全部
过V作VO⊥平面ABC交平面ABC于O.
∵VA⊥VB、VA=VB=1,∴AB=√2.
∵VA⊥VC、VA=VC=1,∴AC=√2.
∵VB⊥VC、VB=VC=1,∴BC=√2.
∵AB=AC=BC=√2,∴S(△ABC)=(1/2)AB^2sin60°=(1/2)×2×(√3/2)=√3/2.
显然有:V(V-ABC)=V(A-VBC),∴(1/3)S(△ABC)×VO=(1/3)S(△VBC)×VA,
∴(√3/2)VO=(1/2)VB×VC×VA=1/2,∴VO=√3/3.
∴V到平面ABC的距离为 √3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式