2个回答
展开全部
因为∫(0,t)dy∫(y,t)f(x)/(1+y^2)dx
=∫(0,t)dx∫(0,x)f(x)/(1+y^2)dy
=∫(0,t)[f(x)arctany|(0,x)]dx
=∫(0,t)f(x)arctanxdx
所以lim(t->0) (1/t^2)*∫(0,t)dy∫(y,t)f(x)/(1+y^2)dx
=lim(t->0) [∫(0,t)f(x)arctanxdx]/(t^2)
"0/0"型,运用洛必达法则
=lim(t->0) [f(t)arctant]/(2t)
=lim(t->0) f(t)/2
=f(0)/2
=2/2
=1
答案选A
=∫(0,t)dx∫(0,x)f(x)/(1+y^2)dy
=∫(0,t)[f(x)arctany|(0,x)]dx
=∫(0,t)f(x)arctanxdx
所以lim(t->0) (1/t^2)*∫(0,t)dy∫(y,t)f(x)/(1+y^2)dx
=lim(t->0) [∫(0,t)f(x)arctanxdx]/(t^2)
"0/0"型,运用洛必达法则
=lim(t->0) [f(t)arctant]/(2t)
=lim(t->0) f(t)/2
=f(0)/2
=2/2
=1
答案选A
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |