直线一般式方程

 我来答
打下大虾的大侠
高粉答主

2020-09-12 · 学会数理化,走遍天下都不怕
打下大虾的大侠
采纳数:6186 获赞数:48124

向TA提问 私信TA
展开全部
直线的一般式方程
直线一般式方程适用于所有的二维空间直线。它的基本形式是Ax+By+C=0 (A,B不全为零)。因为这样的特点特别适合在计算机领域直线相关计算中用来描述直线。
中文名
直线的一般式方程
方程
Ax+By+C=0 (A,B不全为零)
特点
适用于所有直线
应用
计算机领域
快速
导航
关于直线的一般式方程的结论

已知直线上两点求直线的一般式方程
直线的一般式方程
直线的一般式方程能够表示坐标平面内的任何直线。
(A,B不全为零即A^2+B^2≠0)该直线的斜率为 (当B=0时没有斜率)
平行于x轴时,A=0,C≠0;
平行于y轴时,B=0,C≠0;
与x轴重合时,A=0,C=0;
与y轴重合时,B=0,C=0;
过原点时,C=0;
与x、y轴都相交时,A*B≠0。
关于直线的一般式方程的结论
两直线平行时:普遍适用:,方便记忆运用:(A2B2C2 != 0)[1]
两直线垂直时:
两直线重合时: ( )
两直线相交时: ( )
两直线一般式垂直公式的证明:设直线l1:A1x+B1y+C1=0直线l2:A2x+B2y+C2=0
(必要性)∵l1⊥l2∴k1×k2=-1∵k1=-A1/B1,k2=-A2/B2
∴(-A1/B1)(A2/B2)=-1 ∴(B1B2)/(A1A2)=-1
∴B1B2=-A1A2∴A1A2+B1B2=0
(充分性)∵A1A2+B1B2=0∴B1B2=-A1A2∴(B1B2)(1/A1A2)=-1
∴(A1/B1)(A2/B2)=-1∴(-A1/B1)(-A2/B2)=-1∵k1=-A1/B1, k2=-A2/B2
∴k1×k2=-1∴l1⊥l2
已知直线上两点求直线的一般式方程
一般式方程在计算机领域的重要性
常用的直线方程有一般式点斜式截距式斜截式两点式等等。除了一般式方程,它们要么不能支持所有情况下的直线(比如跟坐标轴垂直或者平行),要么不能支持所有情况下的点(比如x坐标相等,或者y坐标相等)。所以一般式方程在用计算机处理二维图形数据时特别有用。
已知直线上两点求直线的一般式方程[2]
已知直线上的两点P1(X1,Y1) P2(X2,Y2), P1 P2两点不重合。
对于AX+BY+C=0:
当x1=x2时,直线方程为x-x1=0
当y1=y2时,直线方程为y-y1=0
当x1≠x2,y1≠y2时,直线的斜率k=(y2-y1)/(x2-x1)
故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1)
即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1)
即(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0
即(y2-y1)x+(x1-x2)y+x2y1-x1y2=0 ①
可以发现,当x1=x2或y1=y2时,①式仍然成立。所以直线AX+BY+C=0的一般式方程就是:
A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2
参考资料
[1] 数学书必修二 一般方程
[2] 人民教育出版社 课程教材研究所.H新课标高中数学必修2 (A版).人民教育出版社,2013年1月:92-101
百度网友0b40ebb
2020-09-12 · TA获得超过269个赞
知道小有建树答主
回答量:813
采纳率:92%
帮助的人:42.4万
展开全部
Ax+By+C=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式