已知asinα bcosα=m,bsinα-acosα=n,求证a^2+b^2=m^2+n^2
1个回答
展开全部
你的题目有问题,应该是"
已知asinα+bcosα=m,bsinα-acosα=n,求证a^2+b^2=m^2+n^2"才对
证明:m^2=(asinα+bcosα)^2=(asinα)^2+2absinαcosα+(bcosα)^2
n^2=(bsinα-acosα)^2=(bsinα)^2-2absinαcosα+(acosα)^2
m^2+n^2=(asinα)^2+(bcosα)^2+(bsinα)^2+(acosα)^2
=a^2*(sinα^2+cosα^2)+b^2(sinα^2+cosα^2)
因为sinα^2+cosα^2=1,所以a^2*(sinα^2+cosα^2)+b^2(sinα^2+cosα^2)=a^2+b^2
即a^2+b^2=m^2+n^2
已知asinα+bcosα=m,bsinα-acosα=n,求证a^2+b^2=m^2+n^2"才对
证明:m^2=(asinα+bcosα)^2=(asinα)^2+2absinαcosα+(bcosα)^2
n^2=(bsinα-acosα)^2=(bsinα)^2-2absinαcosα+(acosα)^2
m^2+n^2=(asinα)^2+(bcosα)^2+(bsinα)^2+(acosα)^2
=a^2*(sinα^2+cosα^2)+b^2(sinα^2+cosα^2)
因为sinα^2+cosα^2=1,所以a^2*(sinα^2+cosα^2)+b^2(sinα^2+cosα^2)=a^2+b^2
即a^2+b^2=m^2+n^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询