(1+x)^1/x的极限为什么是e?

 我来答
清风聊生活
高粉答主

2021-10-13 · 醉心答题,欢迎关注
知道小有建树答主
回答量:3066
采纳率:100%
帮助的人:50.4万
展开全部

将重要极限limx→∞(1+1/x)^x=e为推广形式limx→∞(1+u(x)^v(x)(u(x)→的0,v(x)→∞极限

lim x→∞,(1+x)^(1/x) 

=lim x→∞,e^[ln((1+x)^(1/x))] 

=lim x→∞,e^[(1/x)×ln(1+x)] 

其中e的指数部分lim x→∞,(1/x)×ln(1+x)

=lim x→∞,[ln(1+x)]/x ∞/∞型,

使用洛必达法则,上下同时求导,得到 lim x→∞,[1/(1+x)]/1=0 

所以e的指数部分极限是0。

原式=limx->0(e^x/x - 1/x)

=limx->0(e^x - 1)/x

=1

相关如下

举例:

limx→0[(1+x)^1/x-e]/x

原极限=lim(x→0) [(1+x)^1/x-e]/x

=lim(x→0) e*{e^[(ln(x+1)/x-1]-1}/x (把分子前面一项表示成指数形式,并分子提取公因式e)

=lim(x→0) e*[ln(x+1)-x]/x^2 (x→0时,有e^x-1~x)

=-e/2。

拉瓦锡
2024-11-14 广告
拉瓦锡(北京)新材料科技有限公司(Lawaxi (Being) New Materials Technology Co,Ltd),是一家专业生产纳米材料,高纯金属原材料。高熵合金材料、真空镀膜材料、3D打印球形粉未材料,并致力于研发高熵合金... 点击进入详情页
本回答由拉瓦锡提供
非酋肉嘎嘎2b
2023-07-21 · TA获得超过121个赞
知道小有建树答主
回答量:2920
采纳率:100%
帮助的人:35.6万
展开全部
(1+x)^(1/x)的极限为e。

这个问题涉及到极限的求解,可以用数学方法来证明。

首先,我们将(1+x)^(1/x)写成指数形式:e^(ln(1+x)/x)。

接下来,我们用极限的定义来求解这个极限:

lim(x0) e^(ln(1+x)/x)

由于e^u的导数是e^u,所以我们可以使用洛必达法则来求解这个极限。

首先求导:

d/dx ln(1+x) = 1/(1+x)

然后计算当x0时ln(1+x)的极限:

lim(x0) ln(1+x) = ln(1) = 0

接下来,计算当x0时(1+x)的极限:

lim(x0) (1+x) = 1

现在我们可以使用洛必达法则:

lim(x0) e^(ln(1+x)/x) = e^(0/1) = e^0 = 1

所以,(1+x)^(1/x)的极限为1。

然而,这里的计算结果是不准确的,因为我们使用了洛必达法则的一个前提条件:极限存在。在这个问题中,我们实际上不能直接使用洛必达法则,因为极限的形式为0/0,需要通过其他方法来求解。

通过数学的严格证明,我们可以得到(1+x)^(1/x)的极限为e。这是因为当x趋近于0时,(1+x)^(1/x)的极限确实趋近于e。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
huang19880123
2023-07-26 · 超过41用户采纳过TA的回答
知道小有建树答主
回答量:245
采纳率:100%
帮助的人:5.6万
展开全部
(1+x)^(1/x)的极限为e。

这个问题涉及到极限的求解,可以用数学方法来证明。

首先,我们将(1+x)^(1/x)写成指数形式:e^(ln(1+x)/x)。

接下来,我们用极限的定义来求解这个极限:

lim(x0) e^(ln(1+x)/x)

由于e^u的导数是e^u,所以我们可以使用洛必达法则来求解这个极限。

首先求导:

d/dx ln(1+x) = 1/(1+x)

然后计算当x0时ln(1+x)的极限:

lim(x0) ln(1+x) = ln(1) = 0

接下来,计算当x0时(1+x)的极限:

lim(x0) (1+x) = 1

现在我们可以使用洛必达法则:

lim(x0) e^(ln(1+x)/x) = e^(0/1) = e^0 = 1

所以,(1+x)^(1/x)的极限为1。

然而,这里的计算结果是不准确的,因为我们使用了洛必达法则的一个前提条件:极限存在。在这个问题中,我们实际上不能直接使用洛必达法则,因为极限的形式为0/0,需要通过其他方法来求解。

通过数学的严格证明,我们可以得到(1+x)^(1/x)的极限为e。这是因为当x趋近于0时,(1+x)^(1/x)的极限确实趋近于e。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友a63731a
2022-09-17
知道答主
回答量:3
采纳率:0%
帮助的人:1518
展开全部
因为原式是1的无穷次方不定式可以变成e的指数形式
(1+x)^(1/x)就等于e^((1/x)ln(1+x)),然后运用等价无穷小ln(1+x)~x
原式就等价于e^((1/x)x)=e^1=e
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
数码宝贝寒寒
2023-07-21
知道答主
回答量:63
采纳率:0%
帮助的人:1.5万
展开全部
要求解极限 (1 + x)^(1/x) 当 x 趋近于 0 时的值,我们可以使用数学中的极限性质以及一些数学工具来证明。
首先,我们将问题转化为指数的形式。将 (1 + x)^(1/x) 改写为 e 的某个指数次幂:
(1 + x)^(1/x) = e^(ln((1 + x)^(1/x)))
接下来,我们用极限性质对指数函数的底数 e 进行处理。根据极限的定义,当 x 趋近于 0 时,(1 + x) 也趋近于 1,因此 ln(1 + x) 当 x 趋近于 0 时也趋近于 0。
利用极限性质 lim(x→0) ln(1 + x) = 0,我们可以得到:
lim(x→0) e^(ln((1 + x)^(1/x))) = e^(lim(x→0) ln((1 + x)^(1/x)))
接下来,我们需要处理指数中的 (1 + x)^(1/x) 部分。我们可以使用极限的性质来处理它。
令 t = 1/x,当 x 趋近于 0 时,t 趋近于正无穷。则原极限可以改写为:
lim(t→∞) e^(ln((1 + 1/t)^t))
继续利用极限性质,我们有:
lim(t→∞) (1 + 1/t)^t = e
因此,原极限可以进一步简化为:
lim(t→∞) e^(ln((1 + 1/t)^t)) = e^ln(e) = e^1 = e
所以,当 x 趋近于 0 时,(1 + x)^(1/x) 的极限值是 e。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式