在数学方面,有哪些有趣的科学知识呢?
两个迷惑了大部分人很久数学知识:
第一,硬币悖论。
将两枚一样的硬币放在一起,固定住其中一枚硬币,使另一枚硬币绕其旋转,那么,旋转的硬币究竟要转多少圈才能转回原来的位置呢。
照理来说,一样的硬币会有一样的周长,所以在刚好转完一圈的时候会转回原点。可做出实验的过程中,却观察到,转了一圈才刚好转到固定硬币一半的位置。等转回原点的时候,已经转了两圈。
这可以说是一种误解,实验操作过程的一种假象。如上图,一开始D点在硬币的下方,并且与固定硬币相接,旋转硬币在固定硬币的上方,当旋转硬币旋转到固定硬币下方时,D点仍在硬币的下方,而此时与固定硬币相接的是I点。当实验做到这一步,就会下意识的让人认为旋转硬币已经转了一圈(不信动手试试,嘿嘿),实则为半圈。有一说一,我不大清楚为啥这脑筋急转弯一样的题目会被一度归为世纪难题。
第二,三门问题。
这个问题会一度被广泛讨论的最大原因在于人为限制,为何这么说,先从问题本身分析。
三扇合着的门,其中有一扇门的背后有一只羊。现在打开其中一扇门,能看见羊的概率是1/3。如果有人先选择了一扇门,不管里面有没有山羊,这扇门暂时不开,而是打开另外两扇中的其中一扇没有羊的门。此时让一开始选门的人做出二次选择,继续打开这扇门或者打开另一扇未开的门。接下来出现了不知道是哪些人得出来的结论:“此时能看见羊的概率是2/3。”
这下确实把我愣住了,因为我怎么思考都感觉此时的概率是1/2,因为这种情况不就等于是排出了一扇门,在两扇门里作出选择吗,二选一究竟怎么得出个2/3来的?无苦苦挣扎,就是跳不出的死循环。
于是,无抱着谦虚的的心态,在网上寻求万能的网友来为我解决此题。
网友果然是万能,连解题方法都是五花八门,果然做数学题不能死脑筋呀,我还是太嫩了,得多学学。
很多解释我都看不懂,由于我知识水平有限,所以之后又找了一些文字接地气的网友来为我解答。在大家的合力帮助下,我终于理通了。一开始我只是以为自己太嫩了,理通的后我意识到,我根本就是孤陋寡闻,这种问题居然能一卡就卡了几个小时。我一直解不出2/3的原因,是问题的条件有漏了,漏了个啥?在二次选择的时候有两个选择,保留或更换,要想得出2/3的概率,就一定得有必定选择更换的条件,这样就变成了在3扇门里面选2扇门这种问题。
所以一开始的时候为什么没看见这个条件呢?因为一开始就有这条件的话,这“大难题”不就变成了小学生问题吗?原来如此,那解不出答案应该不是无的问题,而是条件的问题呀。不!这就是我的问题!这么长时间都找不到这缺失的条件,怎么可能不是我的问题!