上三角行列式怎么计算?
1个回答
展开全部
计算:
三角形行列式(triangular determinant)是一种特殊的行列式,数域P上形如:
或
行列式分别称为上三角形行列式和下三角形行列式,亦称上三角行列式和下三角行列式,统称三角形行列式。每个行列式都可以只运用行或者列的性质化为一个与其相等的上(下)三角形行列式。上(或下)三角形行列式都等于它们主对角线上元素的乘积。
行列式性质
1、行列式D与它的转置行列式相等。
2、互换行列式的两行(列),行列式的值改变符号。
3、n阶行列式等于任意一行(列)的所有元素与其对应的代数余子式的乘积之和。
4、n阶行列式中任意一行(列)的所有元素与另一行(列)的相应元素的代数余子式的乘积之和等于零。
5、行列式某一行(列)的公因子可以提出来。即用一个数乘行列式就等于用这个数乘行列式的某一行或某一列。
6、如果行列式中某一行(列)的元素可写成两数之和,则这个行列式等于两个行列式的和,而且这两个行列式除了这一行(列)以外,其余的元素与原行列式的对应元素相同。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询