这两个式子的导数怎么求
6个回答
展开全部
y=[cos(1/x)]^2
y'
=2[cos(1/x)] .[cos(1/x)]'
=2[cos(1/x)] .[-sin(1/x)] .(1/x)'
=2[cos(1/x)] .[-sin(1/x)] .(-1/x^2)
=2cos(1/x).sin(1/x)/ x^2
y=e^(sin√x)
y'
=e^(sin√x) . (sin√x)'
=e^(sin√x) . (cos√x) . (√x)'
=e^(sin√x) . (cos√x) . [1/(2√x)]
=(cos√x) . e^(sin√x)/(2√x)
y'
=2[cos(1/x)] .[cos(1/x)]'
=2[cos(1/x)] .[-sin(1/x)] .(1/x)'
=2[cos(1/x)] .[-sin(1/x)] .(-1/x^2)
=2cos(1/x).sin(1/x)/ x^2
y=e^(sin√x)
y'
=e^(sin√x) . (sin√x)'
=e^(sin√x) . (cos√x) . (√x)'
=e^(sin√x) . (cos√x) . [1/(2√x)]
=(cos√x) . e^(sin√x)/(2√x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询