∫dx/(1+x3)=?
∫dx/(1+x3)
=∫dx/[(x+1)(x²-x+1)]
=∫[(1/3)/(x+1)+(-x/3+2/3)/(x²-x+1)]dx
=(1/3)ln│x+1│+(1/6)∫(3+1-2x)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/(x²-x+1)-(1/6)∫(2x-1)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/[3/4+(x-1/2)²]-(1/6)ln(x²-x+1)
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)∫d((2x-1)/√3)/[1+((2x-1)/√3)²]
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)arctan[(2x-1)/√3]+C (C是积分常数)。
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。
扩展资料:
把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2
如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
参考资料来源:百度百科——不定积分
∫dx/(1+x3)
=∫dx/[(x+1)(x²-x+1)]
=∫[(1/3)/(x+1)+(-x/3+2/3)/(x²-x+1)]dx
=(1/3)ln│x+1│+(1/6)∫(3+1-2x)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/(x²-x+1)-(1/6)∫(2x-1)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/[3/4+(x-1/2)²]-(1/6)ln(x²-x+1)
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)∫d((2x-1)/√3)/[1+((2x-1)/√3)²]
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)arctan[(2x-1)/√3]+C (C是积分常数)。
记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
扩展资料
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
推荐于2017-08-01 · 知道合伙人教育行家
=∫dx/[(x+1)(x²-x+1)]
=∫[(1/3)/(x+1)+(-x/3+2/3)/(x²-x+1)]dx
=(1/3)ln│x+1│+(1/6)∫(3+1-2x)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/(x²-x+1)-(1/6)∫(2x-1)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/[3/4+(x-1/2)²]-(1/6)ln(x²-x+1)
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)∫d((2x-1)/√3)/[1+((2x-1)/√3)²]
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)arctan[(2x-1)/√3]+C (C是积分常数)。
=∫[(1/3)/(x+1)+(-x/3+2/3)/(x²-x+1)]dx
=(1/3)ln│x+1│+(1/6)∫(3+1-2x)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/(x²-x+1)-(1/6)∫(2x-1)/(x²-x+1)dx
=(1/3)ln│x+1│+(1/2)∫dx/[3/4+(x-1/2)²]-(1/6)ln(x²-x+1)
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)∫d((2x-1)/√3)/[1+((2x-1)/√3)²]
=(1/6)ln[(x+1)²/(x²-x+1)]+(√3/3)arctan[(2x-1)/√3]+C (C是积分常数)。