行列式对称类型怎么做
1个回答
展开全部
行列式对称类型:r为行,c为列,一般求法还是基于普通行列式的思想,通过不同行列的加减得到尽可能多的零元素,从而可以利用行列式的按行(列)展开定理。
以下题为例,二三行相加后得到一零元素,且后两个元素相等,此时后两列相减又可以得到一零元素,然后就可以利用行列式的按行(列)展开定理了,一般的对称行列式都可以这样解。
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |