行列式对称类型怎么做

 我来答
帐号已注销
2021-11-15 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

行列式对称类型:r为行,c为列,一般求法还是基于普通行列式的思想,通过不同行列的加减得到尽可能多的零元素,从而可以利用行列式的按行(列)展开定理。

以下题为例,二三行相加后得到一零元素,且后两个元素相等,此时后两列相减又可以得到一零元素,然后就可以利用行列式的按行(列)展开定理了,一般的对称行列式都可以这样解。

性质

①行列式A中某行(或列)用同一数k乘,其结果等于kA。

②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式