1个回答
展开全部
2√3[sin(A+B)/2]^2=sinC+√3+1
∵(A+B)/2=π/2-C/2
∴sin(A+B)/2=sin(π/2-C/2)=cosC/2
∴ [sin(A+B)/2]^2=(cosC/2)²=(1+cosC)/2
那么原等式可化为:
√3(1+cosC)=sinC+√3+1
∴√3cosC-sinC=1
两边同时除以2
√3/2cosC-1/2sinC=1/2
∴cos(C+π/6)=1/2
又0
∵(A+B)/2=π/2-C/2
∴sin(A+B)/2=sin(π/2-C/2)=cosC/2
∴ [sin(A+B)/2]^2=(cosC/2)²=(1+cosC)/2
那么原等式可化为:
√3(1+cosC)=sinC+√3+1
∴√3cosC-sinC=1
两边同时除以2
√3/2cosC-1/2sinC=1/2
∴cos(C+π/6)=1/2
又0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询