解:
设f(n)=(1+1/n)^n
两边取自然对数ln=n*ln(1+1/n)
对n*ln(1+1/n)用罗比达法则
得lim(n*ln(1+1/n))=1 (n-∞)
所以lim(1+1/n)^n=e,(n-∞)
扩展资料:
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。