一阶导数等于0吗?

 我来答
生活达人在此
2021-05-19 · TA获得超过7917个赞
知道小有建树答主
回答量:1975
采纳率:97%
帮助的人:31万
展开全部

一阶导数有可能等于0。

函数在某一点处一阶导数为0,二阶导数为1,此时表示函数在这一点取极小值。

一阶导数为零,那么为稳定点,二阶导数为1>0,那么一阶导数在此点左边为负,右边为正,故原函数在此点左边递减,右边递增。即为极小值。

如果函数一阶导数恒为0,那么更高阶导数必然都为0。类似的,一阶导数为0,二阶导数若小于0,那么就是极大值了。

可导的条件:

如果一个函数的定义域为全体实数,即函数在实数域上都有定义,函数在定义域中一点可导需要一定的条件。

要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续,可导的函数一定连续,不连续的函数一定不可导。

教育小百科达人
2021-05-19 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:472万
展开全部

一阶导数有可能等于0,一阶导数为0时,可能是极值点,可能不是。

在极值点,一阶导数一定为0,但是一阶导数为0,可能是一条平行于x轴的直线,根本没有极大极小的问题,所以一阶导数为0是极指点的必要条件,而非充分条件。

一阶导数单调性:

一阶导数表示的是函数的变化率,最直观的表现就在于函数的单调性定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶导数,那么:

1、若在(a,b)内f'(x)>0,则f(x)在[a,b]上的图形单调递增;

2、若在(a,b)内f’(x)<0,则f(x)在[a,b]上的图形单调递减;

3、若在(a,b)内f'(x)=0,则f(x)在[a,b]上的图形是平行(或重合)于x轴的直线,即在[a,b]上为常数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式